#### **RDCH 702 Lecture 7: Radiation Reactions: Dosimetry and Hot Atom Chemistry**

- Readings:
  - Reading: Modern Nuclear Chemistry, Chap. 17; Nuclear and Radiochemistry, Chap. 6, Chap 11.C.
- Interaction of radiation with matter
  - Neutron, positive ions, electrons, photons
- Dosimetry
- Radiation Protection
- Hot Atom Chemistry

Effect in biological systems Radicals are formed by the interaction of radiation with water

**Radicals drive reactions** 



### **Interaction of Radiation with Matter**

- Interaction of radiation with matter leads to:
  - dissociation of molecules
  - excitation of atoms or molecules
  - ionization of atoms or molecules
- Ionization is easily measured
  - used for detection
- In air about 35 eV of energy are dissipated for each ion pair formed
- Other gases
- Xe: 21.9 eV, He: 43 eV, NH3: 39 eV (IP = 10.8 eV), Ge: 2.9 eV
  - Radiation detected by interaction with matter
  - Interactions <u>ultimately</u> have the same effect
    - → (35 ev/ion pair formation)
  - Measure total number of ions produced to determine energy

#### **Energy Loss Overview**

- 1. At sufficiently high energy ion is bare and energy loss is through electronic excitation and ionization of stopping material
- 2. At velocities comparable to the K-shell electron, ion begins to pick up electrons, stopping is still electronic
- 3. At velocities comparable to valence electrons elastic collisions account for energy loss
  - nuclear stopping
- No sharp difference point between methods 2 and 3
  - elastic and inelastic collisions

#### **Interaction with matter**

#### • Neutrons

- Very little interaction with electron, primary ionization is negligible
- Interaction confined to nuclear effect
  - → scattering (elastic and inelastic)
  - → reactions (n,γ), (n,p), (n,α), (n,2n)

 $\rightarrow$  fission

# **Positive Ions**

- Processes for energy loss
  - Chiefly by interactions with electrons
- Maximum velocity (v) imparted to electron is 2v
  - $K_E = 0.5mv^2; v = (K_E/0.5m)^2$ 
    - → Consider maximum energy from 6 MeV alpha to electron
    - → Average energy from ions to electrons is 100-200 eV
      - \* Secondary ionization
- Electronic stopping
  - inelastic collisions between bound electrons and ion
    - $\rightarrow$  Excitation of atomic electrons
- Nuclear stopping
  - velocity of ion close to velocity of valence electrons
  - elastic collisions dominate
- Velocity of the ion comparable to K shell electron, ion begins to pick up electrons
  - Ions passing through matter
    - → stripped of all orbital electrons whose orbital velocity is less than ion velocity

- Due to large mass of positive ion compared to electron
- distances that positive ions travel in matter are in narrow limits
  - Particle and energy dependent
  - Defined as range
- Large mass drives behavior
  - Fractional energy loss per collision is small
    - → large number of collisions required to stop ion
  - Deflection of ion in each collision is small
- Straggling is fluctuations in average energy loss and projected path
  - order of a few percent



Number of ions from a point source fn(distance)

## **Electrons**

- Energy loss
  - similar to that of positive ions
  - average ion pair formation about 35 eV in air
  - 70-80% of ionization is secondary
- Electron has less mass than positive ions
  - For the same energy, higher velocity
  - Lower stopping power
- Maximum at 146 eV (5950 ion pairs per mg/cm<sup>2</sup>)
- In air ionization stops around 12.5 eV
- Electron can lose a large fraction of energy in one collision
- Straggling is more pronounced
- Energy loss through electron interaction, nuclear scattering

#### **Electron Backscattering**

- Significant fraction of electrons may be reflected from scattering
- Reflected intensity increases with increasing thickness of reflector
  - Saturation can be achieved
- Ratio of measured activity beta source with reflector to that without reflector is back-scattering factor
- Factor varies with material
  - Used to determine Z of material



## **Photons**

- Lose most energy in a few interaction or a single interaction
- Need more material for interaction than electron
- Average specific ionization is less than electron (10%)
- Average energy loss per ion pair formation in air is 35 eV

#### **Photoelectric effect**

- photon with energy hv ejects bound electron and imparts energy hv-ɛb to electron
  - εb is electron binding energy
- Mostly K-shell, some L-shell (about 20%)
- Proportional to Z<sup>5</sup> of absorber
- For 5% photoelectric effect, γ energy needed for different Z
  - Al- 0.15 MeV
  - Cu-0.4 MeV
  - Sn-1.2 MeV
  - Pb-4.7 MeV



# Compton Effect

- Photon loss part of energy to electron
- Photon is scattered
- Minimum for scattered photon is  $(E'_{\gamma})_{\min} = \frac{E_o}{2} \frac{1}{1 + \frac{E_o}{2E_{\alpha}}}$

E<sub>o</sub>= electron rest energy Back scattering peak can be seen on spectra



# Pair Production

**Production of B<sup>+</sup> and B<sup>-</sup>** 

- Proportional to energy (log
   E about 4 MeV) and Z<sup>2</sup>
- More common at high energy
  - 511 keV from positronelectron annihilation





Radicals are formed by the interaction of radiation with water

**Radicals drive reactions** 

#### **Dosimetry**

- Quantitative relation between specific measurement in a radiation field and chemical and/or biological changes
  - dose effect relationship
  - caused by production of ionized molecules, atoms, secondary electrons
  - chemical changes, biological effects

### **Radiation Dose Units**

- Absorbed Dose
  - energy absorbed per unit mass of target for any kind of ionizing energy
  - **Gray (Gy) = 1J/kg**
  - in US; rad = 100 erg/g
  - IJ/kg = 10<sup>7</sup> erg/10<sup>3</sup> g = 10<sup>4</sup> erg/g
    100 rad=1 Gy
- Absorbed dose is referred to as dose
- Treated as point function, having a value at every position in an irradiated object
- 1 eV = 1.60E-19 J
- **1 charge pair separation =1.60E-19 C**

### **Dose Equivalent**

- Absorbed dose needed to achieve biological effect is different for different types of radiation
  - Difference due to high versus low linear energy transfer (LET)
  - Dose equivalent compensates for this difference
  - H (dose equivalent) = QD
  - Q is dimensionless, has some different values
  - Q=fn(particle, energy); 1≤Q≤20
    - → Q from NCRP Report 116
  - uses LET (L) in keV/µm in water

| Radiation                      | QF        |
|--------------------------------|-----------|
| X and γrays                    | 1         |
| <b>Electrons and Positrons</b> | 1         |
| Neutrons, E < 10 keV           | 3         |
| Neutrons, E > 10 keV           | 10        |
| Protons                        | 1-10      |
| Alpha Particles                | 1-20      |
| Heavy Ions                     | 20        |
| Q Dependence of                | on LET    |
| LET (L)                        | Q         |
| (kev/µm in water)              |           |
| <10                            | 1         |
| 10-100                         | 0.32L-2.2 |
| >100                           | 300/L^0.5 |

## **Dose Equivalent**

- When dose in Gy, dose equivalent is Sv
- When dose in rad, dose equivalent is rem (roentgenequivalent-man)
- 1 Gy = 100 rad, 1 Sv = 100 rem
- Particle type and energy should be explicitly considered
- Biological distribution can depend on isotope
  - I to thyroid
  - Sr, Ra to bone
  - Cs, H widely distributed
  - Metals go towards liver
  - Complexes can be released in kidneys
     → pH change

## **Radiation Protection**



fatal within days



#### **Dose Calculations**

- Alpha and Beta
- Absorbed dose: D = AE<sub>ave</sub>x1.6E-13J/MeVx1E3g/kg =1.6E-10AE<sub>ave</sub> (Gy/s)
- A = conc. Bq/g,
- E<sub>ave</sub>= average energy

 $\label{eq:generalized} \begin{array}{l} \underline{\operatorname{Calculated\ dose\ of\ 1.2\ E5\ Bq\ of\ ^{14}C\ in\ 50\ g\ of\ tissue}} \\ & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & &$ 

### **More Dose Calculations**

- <u>Photons</u>
- μ/r is air energy absorption coefficient
- $= 0.0027 \text{ m}^2/\text{kg} \text{ for } 60 \text{ keV to } 2 \text{ MeV}$
- $D = 3.44E-17 CE/r_{\kappa}^{2}(Gy/s)$
- C in Bq, E in Met and r, distance from source, in m
- gamma energy needs to normalized to %
- Dose from 10000 Bq <sup>38</sup>S at 0.1 m
- 95 % gamma yield 1.88 MeV
- $D= 3.44E-17 \times 1E5 \times 1.88*0.95 / 0.1^2$
- D = 6.14E-10 Gy/s

Need to consider average gamma energy

CEμ

#### Probability Coefficients for Stochastic Effects

| Detriment                         | Adult Workers<br>(1E-2/Sv) | Whole Pop.<br>(1E-2/Sv) |
|-----------------------------------|----------------------------|-------------------------|
| <b>Fatal Cancer</b>               | 4.0                        | 5.0                     |
| Nonfatal Cancer<br>Severe genetic | 0.8                        | 1.0                     |
| effects                           | 0.8                        | 1.3                     |
| TOTAL                             | 5.6                        | 7.3                     |

What is probability of detriment from 2 mSv/y for 10 years to adult worker?
2E-3 Sv/y x 5.6E-2/Sv x 10 y = 1.1E-3

From maximum occupation dose for 30 years 50E-3 Sv/y x 5.6E-2/Sv x 30 y = 0.084

# **Biological Effects Concepts**

| Гіте                                          | Event                            |
|-----------------------------------------------|----------------------------------|
| 10 <sup>-18</sup> seconds                     | Absorption of Ionizing Radiation |
| 10 <sup>-16</sup> seconds                     | Ionization, Excitation           |
| 10 <sup>-12</sup> seconds                     | Radical formation, bond breakage |
| 10 <sup>-12</sup> to 10 <sup>-6</sup> seconds | Radical reaction                 |
| Min. to Hrs.                                  | Cellular Processes               |
| Hrs. to Months                                | Tissue Damage                    |
| Years                                         | Clinical effects                 |
| Generations                                   | Genetic Effects                  |
|                                               |                                  |

- Linear Effect of Dose
  - Any amount radiation above background is harmful
  - Basis of radioisotope exposure limits
  - http://www.nrc.gov/reading-rm/doccollections/cfr/part020/
  - Low level radiation effect not so clear

## **Intake limits**

- Air and water
  - nuclide specific (include daughter)
  - Class refers to lung retention (Days, Weeks, Years)
  - Annual limits on Intake (ALI) derived from 0.05 Sv total dose or 0.5 Sv dose to an organ or tissue
  - Derived air concentration (DAC) comes from ALI

DAC = ALI/(2000 hr x 60 min/hr x 2E4 mL/min)

|               |                   |                         | Occup                             | Table 1<br>Dational Valu | les                     | Table<br>Efflue<br>Concentra | nt                | Table 3<br>Releases to<br>Sewers                |
|---------------|-------------------|-------------------------|-----------------------------------|--------------------------|-------------------------|------------------------------|-------------------|-------------------------------------------------|
|               |                   |                         | Col. 1                            | Col. 2                   | Col. 3                  | Col. 1                       | Col. 2            |                                                 |
| Atomic<br>No. | Radio-<br>nuclide | Class                   | Oral<br>Ingestion<br>ALI<br>(µCi) | ALI<br>(µCi)             | tion<br>DAC<br>(μCi/ml) | Air<br>(µCi/ml)              | Water<br>(µCi/ml) | Monthly<br>Average<br>Concentration<br>(µCi/ml) |
| 95            | Am-241            | W, all<br>compou<br>nds | 8E-1<br>Bone Surf                 | 6E-3<br>Bone Surf        | 3E-12                   | -                            | -                 | -                                               |
|               |                   |                         | (1E+0)                            | (1E-2)                   | -                       | 2E-14                        | 2E-8              | 2E-7                                            |

Isotope data found at: http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/appb

#### Laboratory usage

- ALI and DAC basis of activities levels in the laboratory
  - http://rms.unlv.edu/radiological/Form%202%20-%20Risk%20Assessment%20and%20Control%20Guideline%20for%20R AM%20(2).pdf
- Use data to correlate isotope mass, experimental method, and activity level

| Rad Safety<br>Level | Risk Level                                                                                                                                                                                                                                                                          | Activity per Experiment *<br>(all apply)                                                                              | Control Measures                                                                                                                                                                                                                                                                                                                                                                                    | Bioassay<br>Requirement and<br>Periodicity | Air Monitoring |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|
| 1                   | <u>MINIMAL RISK</u> : Unlikely to produce a<br>dose to a Worker greater than 100<br>mrem.<br>(1 ALI intake = 5000 mrem, 0.01 ALI<br>intake = 50 mrem)                                                                                                                               | ≤ .01 ALI-Ingestion<br>Max. = 50 µCi                                                                                  | <ul> <li>General supervision by the<br/>Authorized User</li> <li>Instruction to Workers on rad risks<br/>and proper handling procedures</li> <li>In procedures and post use survey<br/>by Worker</li> <li>Monthly inspection and quarterly<br/>survey by Radiation Safety Office</li> </ul>                                                                                                         | None                                       | None           |
| 2                   | LOW RISK: Possible to receive an<br>annual dose in excess of 5 rem.<br>Mitigated by the Worker:<br>understanding, and applying<br>good health physics work<br>practices and procedures<br>use of engineering and<br>contamination control<br>measures<br>(1 ALI intake = 5000 merm) | Non Airborne<br>>.01 to ≤ 1.0<br>ALI-Ingestion<br><u>Airborne</u><br>≤ .01 ALI-Limiting<br><u>AII</u><br>Max. = 5 mCi | <ul> <li>Instruction to Worker on rad risks<br/>and proper handling procedures</li> <li>Review, understand and apply<br/>research protocol</li> <li>Lab specific training by Authorized<br/>User followed by routine<br/>supervision</li> <li>In-procedure monitoring and post<br/>use surveys by Worker</li> <li>Monthly inspection and quarterly<br/>survey by Radiation Safety Office</li> </ul> | None<br>None                               | None . None    |

#### ATTACHMENT 2 UNLV RISK ASSESSMENT and CONTROL GUIDELINE for UNSEALED-RADIOACTIVE MATERIALS

#### ATTACHMENT 2 UNLV RISK ASSESSMENT and CONTROL GUIDELINE for UNSEALED-RADIOACTIVE MATERIALS (cont.)

|                        |                                                                                                                                                                                                                                                                                                                                                                                                             | UNSEALED-RADIOA                                                                                                                    | CTIVE MATERIALS (cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rad<br>Safety<br>Level | Risk Level                                                                                                                                                                                                                                                                                                                                                                                                  | Activity per Experiment *<br>(all apply)                                                                                           | Control Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bioassay<br>Requirement and<br>Periodicity                                                              | Air Monitoring                                                                                                                                                                                                                                                                                                                                        |
| 3                      | MODERATE RISK: Likely to receive an annual dose in excess of 5 rem. Mitigated by:         • the Worker has thorough knowledge of radiation safety principles and practices, plus task specific training         • use of engineering and contamination control measures         • consistent use of task specific control measures         • demonstrating ability to effectively control radiation hazards |                                                                                                                                    | <ul> <li>Protocol approval by Authorized User<br/>and RSO</li> <li>Lab specific training of Worker by<br/>Authorized User followed by routine<br/>supervision</li> <li>In-procedure monitoring and post use<br/>surveys by Worker</li> <li>Monthly inspection and survey by<br/>Radiation Safety Office</li> <li>Monthly inspection and survey by<br/>Radiation Safety Office</li> <li>Non-aiderne</li> <li>&gt; 10 ALI (ingestion) requires fume<br/>hood</li> <li>≥ 0.01 ALI (limiting), requires fume<br/>hood</li> <li>≥ 10 ALI (limiting), requires negative pressure glove box</li> </ul>                                    | Baseline bioassay<br>and quarterly<br>bioassay required<br>>5 ALI (limiting)<br>dispersible-airborne    | Routine air monitoring<br>required if > 0.01 ALI<br>(inhalation) of dry,<br>dispersible material.<br>Continuous air<br>monitoring required if<br>>0.1 ALI (inhalation) of<br>dry, dispersible material.<br>Breathing Zone<br>Air-sampling (BZA) is<br>required when working<br>with ≥ 1 ALI (inhalation)<br>dry, dispersible materials<br>(airborne). |
| Rad<br>Safety<br>Level | Risk Level                                                                                                                                                                                                                                                                                                                                                                                                  | Activity per Experiment *<br>(all apply)                                                                                           | Control Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bioassay<br>Requirement a<br>Periodicity                                                                | nd Air Monitoring                                                                                                                                                                                                                                                                                                                                     |
| 4                      | HIGH RISK:         Very likely to receive an annual dose in excess of 5 rem. Mitigated by:           •         the Worker has advanced knowledge in radiation safety principles and practices, plus task specific training and procedures           •         consistently using task specific control measures           •         demonstrating the ability to effectively control radiation hazards      | Non-Airborne<br>>50 to ≤ 1,000<br>ALI-Ingestion<br><u>Airborne</u><br>> 50 to ≤1,000 ALI-Limiting<br><u>AII</u><br>Max. = 1000 mCi | <ul> <li>Protocol approval by Authorized User<br/>and RSO</li> <li>Authorized User MUST be present in I</li> <li>Initial applied training of Worker by<br/>Authorized User followed by routine<br/>supervision</li> <li>In-procedure monitoring and post use<br/>surveys by Worker</li> <li>Weekly survey by Authorized User/Sta</li> <li>Monthly inspection and survey by<br/>Radiation Safety</li> <li>Non-Airborne</li> <li>≥100 ALI-(limiting), requires negative<br/>pressure glove box</li> <li>Airborne</li> <li>≥10 ALI (limiting), requires negative<br/>pressure glove box - 1,000 ALI<br/>(inviting) maximum</li> </ul> | aff<br>Baseline bioassa<br>and quarterly<br>bioassay require<br>Work activity revie<br>by the Radiation | monitoring required<br>Breathing Zone<br>Air-sampling (BZA)<br>required                                                                                                                                                                                                                                                                               |

#### ATTACHMENT 1

EVALUATION of AIRBORNE RADIOACTIVE MATERIALS (cont.)

|         | Limitir                   | ng Values - I              | Radiologica                       | l Health*             | Rad Level<br>1**   | Rad Level                            | Rad Le                                | evel 3                            | Rad L                                 | evel 4                            |
|---------|---------------------------|----------------------------|-----------------------------------|-----------------------|--------------------|--------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|
| Nuclide | ALI<br>Ingestion<br>(µCi) | ALI<br>Inhalation<br>(µCi) | Ratio<br>Ingestion<br>/Inhalation | Limiting ALI<br>(µCi) | Less Than<br>(µCi) | Not Airborne<br>& Less Than<br>(µCi) | lf NOT<br>Airborne Less<br>Than (µCi) | lf Airborne<br>Less Than<br>(µCi) | lf NOT<br>Airborne Less<br>Than (μCi) | lf Airborne<br>Less Than<br>(µCi) |
| Am-241  | 0.8                       | 0.006                      | 133                               | 0.01                  | 0.000060           | 0.80                                 | 40                                    | 0.30                              | 800                                   | 6.00                              |
| Am-242m | 0.8                       | 0.006                      | 133                               | 0.01                  | 0.000060           | 0.80                                 | 40                                    | 0.30                              | 800                                   | 6.00                              |
| Am-243  | 0.8                       | 0.006                      | 133                               | 0.01                  | 0.000060           | 0.80                                 | 40                                    | 0.30                              | 800                                   | 6.00                              |
| Ba-133  | 2,000                     | 700                        | 2.86                              | 700                   | 7.00               | 2,000                                | 50,000                                | 35,000                            | 1,000,000                             | 700,000                           |
| C-14    | 2,000                     | 2,000                      | 1.00                              | 2,000                 | 20                 | 2,000                                | 50,000                                | 50,000                            | 1,000,000                             | 1,000,000                         |
| Cd-109  | 300                       | 40                         | 7.50                              | 40                    | 0.400              | 300                                  | 50,000                                | 2,000                             | 300,000                               | 40,000                            |
| CI-36   | 2,000                     | 2,000                      | 1.00                              | 2,000                 | 20                 | 2,000                                | 50,000                                | 50,000                            | 1,000,000                             | 1,000,000                         |
| Cm-244  | 1.0                       | 0.010                      | 100                               | 0.01                  | 0.00010            | 1.00                                 | 50                                    | 0.50                              | 1,000                                 | 10                                |
| Cm-248  | 0.2                       | 0.002                      | 100                               | 0.002                 | 0.000020           | 0.20                                 | 10                                    | 0.10                              | 200                                   | 2.00                              |
| Co-57   | 4,000                     | 700                        | 5.71                              | 700                   | 7.00               | 4,000                                | 50,000                                | 35,000                            | 1,000,000                             | 700,000                           |
| Co-60   | 200                       | 30                         | 6.67                              | 30                    | 0.300              | 200                                  | 50,000                                | 1,500                             | 200,000                               | 30,000                            |
| Cs-137  | 100                       | 200                        | 0.50                              | 100                   | 1.00               | 100                                  | 50,000                                | 5,000                             | 100,000                               | 100,000                           |
| Eu-152  | 800                       | 20                         | 40                                | 20                    | 0.200              | 800                                  | 50,000                                | 1,000                             | 800,000                               | 20,000                            |
| Eu-154  | 500                       | 20                         | 25                                | 20                    | 0.200              | 500                                  | 50,000                                | 1,000                             | 500,000                               | 20,000                            |
| Eu-155  | 4,000                     | 90                         | 44                                | 90                    | 0.900              | 4,000                                | 50,000                                | 4,500                             | 1,000,000                             | 90,000                            |
| Gd-148  | 10                        | 0.008                      | 1,250                             | 0.01                  | 0.000080           | 10                                   | 500                                   | 0.40                              | 10,000                                | 8.00                              |
| H-3     | 80,000                    | 80,000                     | 1.00                              | 80,000                | 50                 | 5,000                                | 50,000                                | 50,000                            | 1,000,000                             | 1,000,000                         |
| Hf-175  | 3,000                     | 900                        | 3.33                              | 900                   | 9.00               | 3,000                                | 50,000                                | 45,000                            | 1,000,000                             | 900,000                           |
| I-125   | 40                        | 60                         | 0.67                              | 40                    | 0.400              | 40                                   | 2,000                                 | 2,000                             | 40,000                                | 40,000                            |
| I-131   | 30                        | 50                         | 0.60                              | 30                    | 0.300              | 30                                   | 1,500                                 | 1,500                             | 30,000                                | 30,000                            |
| Mn-54   | 2,000                     | 800                        | 2.50                              | 800                   | 8.00               | 2,000                                | 50,000                                | 40,000                            | 1,000,000                             | 800,000                           |

#### ATTACHMENT 1 EVALUATION of AIRBORNE RADIOACTIVE MATERIALS (cont.)

|         | Limitin                   | ng Values - I              |                                   |                       | Rad Level          | Rad Level                            | Rad Le                                | ) /                             | Rad L                                 | evel 4                            |
|---------|---------------------------|----------------------------|-----------------------------------|-----------------------|--------------------|--------------------------------------|---------------------------------------|---------------------------------|---------------------------------------|-----------------------------------|
|         |                           | -                          | _                                 |                       | 1**                | 2                                    |                                       |                                 |                                       |                                   |
| Nuclide | ALI<br>Ingestion<br>(µCi) | ALI<br>Inhalation<br>(µCi) | Ratio<br>Ingestion<br>/Inhalation | Limiting ALI<br>(µCi) | Less Than<br>(µCi) | Not Airborne<br>& Less Than<br>(µCi) | lf NOT<br>Airborne Less<br>Than (µCi) | lfAirborne<br>LessThan<br>(µCi) | lf NOT<br>Airborne Less<br>Than (µCi) | lf Airborne<br>Less Than<br>(µCi) |
| Na-22   | 400                       | 600                        | 0.67                              | 400                   | 4.00               | 400                                  | 50,000                                | 20,000                          | 400,000                               | 400,000                           |
| Np-237  | 0.5                       | 0.004                      | 125                               | 0.004                 | 0.000040           | 0.50                                 | 25                                    | 0.20                            | 500                                   | 4.00                              |
| P-32    | 600                       | 400                        | 1.50                              | 400                   | 4.00               | 600                                  | 50,000                                | 20,000                          | 600,000                               | 400,000                           |
| P-33    | 6,000                     | 3,000                      | 2                                 | 3,000                 | 50                 | 5,000                                | 50,000                                | 50,000                          | 1,000,000                             | 1,000,000                         |
| Pb-210  | 1.0                       | 20                         | 0.05                              | 1.00                  | 0.010              | 1.00                                 | 50                                    | 50                              | 1,000                                 | 1,000                             |
| Po-210  | 3.0                       | 0.60                       | 5.00                              | 0.60                  | 0.0060             | 3.00                                 | 150                                   | 30                              | 3,000                                 | 600                               |
| Pu-236  | 2.0                       | 0.020                      | 100                               | 0.02                  | 0.00020            | 2.00                                 | 100                                   | 1.00                            | 2,000                                 | 20                                |
| Pu-238  | 0.9                       | 0.007                      | 129                               | 0.01                  | 0.000070           | 0.90                                 | 45                                    | 0.35                            | 900                                   | 7.00                              |
| Pu-239  | 0.8                       | 0.006                      | 133                               | 0.01                  | 0.000060           | 0.80                                 | 40                                    | 0.30                            | 800                                   | 6.00                              |
| Pu-240  | 0.8                       | 0.006                      | 133                               | 0.01                  | 0.000060           | 0.80                                 | 40                                    | 0.30                            | 800                                   | 6.00                              |
| Pu-241  | 40                        | 0.30                       | 133                               | 0.30                  | 0.0030             | 40                                   | 2,000                                 | 15                              | 40,000                                | 300                               |
| Pu-242  | 0.8                       | 0.007                      | 114                               | 0.01                  | 0.000070           | 0.80                                 | 40                                    | 0.35                            | 800                                   | 7.00                              |
| Ra-226  | 2.0                       | 0.60                       | 3.33                              | 0.60                  | 0.0060             | 2.00                                 | 100                                   | 30                              | 2,000                                 | 600                               |
| Sb-125  | 2,000                     | 500                        | 4.00                              | 500                   | 5.00               | 2,000                                | 50,000                                | 25,000                          | 1,000,000                             | 500,000                           |
| Sm-147  | 20                        | 0.070                      | 286                               | 0.07                  | 0.00070            | 20                                   | 1,000                                 | 3.50                            | 20,000                                | 70                                |
| Sr-85   | 3,000                     | 2,000                      | 1.50                              | 2,000                 | 20                 | 3,000                                | 50,000                                | 50,000                          | 1,000,000                             | 1,000,000                         |
| Sr-90   | 30                        | 4.00                       | 7.50                              | 4.00                  | 0.040              | 30                                   | 1,500                                 | 200                             | 30,000                                | 4,000                             |
| Tc-99   | 4,000                     | 700                        | 5.71                              | 700                   | 7.00               | 4,000                                | 50,000                                | 35,000                          | 1,000,000                             | 700,000                           |
| Tc-99m  | 80,000                    | 200,000                    | 0.40                              | 80,000                | 50                 | 5,000                                | 50,000                                | 50,000                          | 1,000,000                             | 1,000,000                         |
| Th-229  | 0.6                       | 0.001                      | 667                               | 0.001                 | 0.000009           | 0.60                                 | 30                                    | 0.05                            | 600                                   | 0.90                              |
| Th-230  | 4.0                       | 0.006                      | 667                               | 0.01                  | 0.000060           | 4.00                                 | 200                                   | 0.30                            | 4,000                                 | 6.00                              |
| Th-232  | 0.7                       | 0.001                      | 700                               | 0.001                 | 0.000010           | 0.70                                 | 35                                    | 0.05                            | 700                                   | 1.00                              |
| TI-204  | 2,000                     | 2,000                      | 1.00                              | 2,000                 | 20                 | 2,000                                | 50,000                                | 50,000                          | 1,000,000                             | 1,000,000                         |
| U-232   | 2.0                       | 0.008                      | 250                               | 0.01                  | 0.000080           | 2.00                                 | 100                                   | 0.40                            | 2,000                                 | 8.00                              |
| U-233   | 10                        | 0.040                      | 250                               | 0.04                  | 0.00040            | 10                                   | 500                                   | 2.00                            | 10,000                                | 40                                |
| U-235   | 10                        | 0.040                      | 250                               | 0.04                  | 0.00040            | 10                                   | 500                                   | 2.00                            | 10,000                                | 40                                |
| U-238   | 10                        | 0.040                      | 250                               | 0.04                  | 0.00040            | 10                                   | 500                                   | 2.00                            | 10,000                                | 40                                |
| Zn-65   | 400                       | 300                        | 1.33                              | 300                   | 3.00               | 400                                  | 50,000                                | 15,000                          | 400,000                               | 300,000                           |
| Zr-95   | 1,000                     | 100                        | 10                                | 100                   | 1.00               | 1,000                                | 50,000                                | 5,000                           | 1,000,000                             | 100,000                           |

#### ATTACHMENT 1 EVALUATION of AIRBORNE RADIOACTIVE MATERIALS (cont.)

|         | Limitin                   | g Values - I               | Radiologica                       | l Health*             | Rad Level<br>1**   | Rad Level<br>2                       | Rad Le                                | evel 3                            | Rad L                                 | evel 4                            |
|---------|---------------------------|----------------------------|-----------------------------------|-----------------------|--------------------|--------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|
| Nuclide | ALI<br>Ingestion<br>(µCi) | ALI<br>Inhalation<br>(µCi) | Ratio<br>Ingestion<br>/Inhalation | Limiting ALI<br>(uCi) | Less Than<br>(µCi) | Not Airborne<br>& Less Than<br>(µCi) | lf NOT<br>Airborne Less<br>Than (µCi) | lf Airborne<br>Less Than<br>(µCi) | lf NOT<br>Airborne Less<br>Than (µCi) | lf Airborne<br>Less Than<br>(µCi) |
| Tc-99   | 4,000                     | 700                        | 5.71                              | 700                   | 7.00               | 4,000                                | 50,000                                | 35,000                            | 1,000,000                             | 700,000                           |

- Up to 1 ALI-ingestions
  - $\rightarrow 10 \ \mu Ci \ limit$
- A=3.7E5 Bq,  $\lambda$ = 4.88E-18/s<sup>-1</sup>
- A/ λ=N, N=7.58E22=0.126 moles=30 g U
   → Level 3, non-airborne 500 µCi limit
   →1500 g U, in fume hood
- Level 3 for for <sup>99</sup>Tc, pon-airborne
  - Up to 50000 μCi limit
  - A=1.85E9 Bq,  $\lambda$ = 1.03E-13 s<sup>-1</sup>
  - A/ $\lambda$ =N, N=1.79E22=2.98E-2 moles=2.95 g Tc

#### **Hot Atom Chemistry**

- Chemical processes that occur during nuclear reactions
  - Also called Szilard-Chalmers process
- Example: Activity of I extracted from water and ethyl iodide
  - Precipitated at AgI
- Chemical reactions produced by nuclear transformation
  - Neutron irradiation of ethyl iodide
    - $\rightarrow$  Iodine extracted into aqueous phase
      - \*  $^{127}I(n,\gamma)^{128}I$ 
        - **X** Possible to produce specific isotope
- Need to overcome bond energy
  - Neutron does not normally contain sufficient energy
  - Gamma decay can provide suitable energy from recoil
    - $\rightarrow$  M is atom mass, E is gamma energy in MeV
      - \* Nucleus excited 6-8 MeV

| Table 11-3  | Recoil | Energies in | Electron Volts         |
|-------------|--------|-------------|------------------------|
| Imparted to | Nuclei | by Gamma    | <b>Rays of Various</b> |
| Energies    |        |             |                        |

| M                          | $E_{\gamma} = 2 \text{ MeV}$ | $E_{\gamma} = 4 \mathrm{MeV}$                          | $E_{\gamma} = 6 \mathrm{MeV}$                         |
|----------------------------|------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| $\rightarrow \frac{1}{20}$ | 107                          | 430                                                    | 967                                                   |
| 50                         | 43                           | 172                                                    | 387                                                   |
| 100                        | 21                           | 86                                                     | 193                                                   |
| 150                        | 14                           | 57                                                     | 129                                                   |
| 200                        | 11                           | 43                                                     | 97                                                    |
|                            | 20<br>50<br>100<br>150       | $\begin{array}{r cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

### **Hot Atom Chemistry**

- Bonds are broken due to reaction energy
  - Bond energies on the order of eV
- Conditions needed
  - Bond of produced atom must be broken
  - Should not recombine with fragments
  - Should not exchange with target molecule
     → Slow kinetics
  - Separation of new species
- Halogens produced in this method
  - CCl<sub>4</sub>
  - $C_2H_2Cl_2$
  - $C_2H_5Br$
  - $C_2H_2Br_2$
  - $C_6H_5Br$
  - CH<sub>3</sub>I

→ Used to produce <sup>38</sup>Cl, <sup>80</sup>Br, <sup>82</sup>Br, <sup>128</sup>I

#### **Hot Atom Chemistry: Chemical Reactions**

- Beta reactions can also be exploited
  - $\text{TeO}_3^2 \rightarrow \text{IO}_3^- + \text{e}^-$ 
    - $\rightarrow$  Recoil is not quantized
      - \* Kinetic energy shared
      - \* E is maximum beta energy (MeV)
        - $\begin{array}{l} & R_{max}(eV)=573E(E+1)\\ .02)/M \end{array}$
        - ✗ 0.5 MeV in 100 amu is about 4 MeV
      - \* Energy is distributed
        - X Translational, rotational, vibrational
      - \* Bond usually not broken
  - Internal conversion set atom in excited state
    - → Rearrangement of electrons and drive chemical reactions
    - $\rightarrow$  Separation of isomers

Table 11-4Approximate Recoil Energies Expectedwith Various Nuclear Events (from reference C5)

| Nuclear Process  | Range of Recoil Energy (eV) <sup>4</sup> |
|------------------|------------------------------------------|
| $\beta^-$ Decay  | $10^{-1} - 10^2$                         |
| $\beta^+$ Decay  | $10^{-1} - 10^{2}$                       |
| α Decay          | $\sim 10^{s}$                            |
| IT               | 10 <sup>-1</sup> -1                      |
| EC               | 10 <sup>-1</sup> -10 <sup>1</sup>        |
| $n_{th}, \gamma$ | $\sim 10^{2}$                            |
| n, p             | ~10 <sup>s</sup>                         |
| Fission          | $\sim 10^{8}$                            |

<sup>a</sup> Based on a hot-atom mass of  $\sim 100$ , the most probable kinetic energy for a given nuclear process, and a range of nuclear energies most frequently encountered.

## Review

- Interaction of radiation with matter
- Dosimetry
  - Calculations
  - Units
  - limitation
  - Influence of particles
  - Measurements
- Hot Atom Chemistry
  - Energetic processes

# Questions

- Compare DAC for isotopes of Pu and Cs
- Perform a dose calculation for 1 mg internal exposure of <sup>210</sup>Po
- Use DAC to evaluate experimental limits for <sup>241</sup>Am
- Calculate the dose from 500000 Bq of <sup>241</sup>Am at 0.050 m
- What are the different masses of <sup>99</sup>Tc permitted for the various laboratory safety levels at UNLV.
- What are the principles of hot atom chemistry

### Questions

- Comment on the blog
- Respond to PDF Quiz 7